
Delta Send-Recv: Compiler and Run-time Support for Dynamic
Pipelining of Coarse-grained Computation and Communication

Bin Bao, Chen Ding
University of Rochester

bao, cding@cs.rochester.edu

Yaoqing Gao, and Roch Archambault
IBM Toronto Software Lab
ygao, archie@ca.ibm.com

Abstract
This paper presents compiler and run-time support for improving
MPI programs that use coarse-grained computation and communi-
cation. It uses compiler or virtual-memory support to divide com-
putation and communication into pieces we call “deltas” and in-
terleave them. Delta-send overlaps data production and data send.
Delta-receive, previously known as early release, overlaps data re-
ceive and data use. When used together in a program, the two
primitives are dynamically chained to produce the effect of sender-
receiver pipelining and can gain more than the maximal speedup
possible with just sender or just receiver side overlapping. The pa-
per presents a design and an analysis of delta send-recv and mea-
sures the effect of such dynamic pipelining on a set of kernel tests
with some contrived computation and representative communica-
tion patterns including pairwise and collective communication.

1. Introduction
Computation and communication overlapping is a basic method
in improving the performance of distributed code. Non-blocking
send and receive permits overlapping between communication and
independent computation. We present an extension to MPI non-
blocking send-recv called delta send-recv. Using compiler and
virtual-memory paging support, delta send-recv divides a data mes-
sage and its computation into pieces that we call deltas or in-
crements. The communication starts as soon as the first incre-
ment is computed, and the communication of early increments is
overlapped with the computation of later ones. Similar toearly re-
lease [4], which begins the use of data as soon as a page has arrived,
delta-recv begins the use of data when the increment is received.

The most important benefit comes from combining incremental
send and receive, where dependent data is being computed, com-
municated, and consumed in a distributed processing pipeline. For
coarse-grained computation and communication, the pipelining by
delta send-recv greatly increases the amount of parallelism between
the sender and the receiver and tolerates the communication cost.
In addition, the pipelining of successive delta sender-receiver pairs
is dynamically chained to produce a cascading effect, in which de-
pendent computation in all involved tasks proceeds in parallel. As
a result, delta send-recv is capable of performance improvement

[copyright notice will appear here]

linear to the number of tasks. In comparison, non-blocking com-
munication can improve performance by at most a constant factor.

Compiler analysis has been studied for explicitly parallel pro-
grams, including dataflow analysis [2, 5, 8, 9] and abstract interpre-
tation [3]. Previous compiler research has used loop strip-mining
and tiling to enable similar sender-receiver pipelining [6, 10]. Au-
tomatic transformation requires precise send-receive matching. Re-
cent advances including the notion of task groups [2] and tech-
niques for matching textually unaligned barriers [11]. However,
static send-receive matching is not yet fully solved in a general sys-
tem with a dynamically created tasks. In comparison, the pipelin-
ing by delta send-recv is formed dynamically without the need for
static send-receive matching. It is easier to use since it needs pro-
gram analysis and transformation only at the sender side.

2. Dynamic Pipelining Through Incremental
Communication

Delta send-recv provides a simple extension to the MPI inter-
face. MPI Delta send begin is called before the computation to
the send buffer, which indicates the runtime system that the fol-
lowing computation will consecutively write to the send buffer,
and then MPI Delta send end marks the end of such computa-
tion. MPI Delta wait is used to finish our non-blocking style delta
send, similar to its counterpart in the MPI non-blocking send. For
the delta-receive operation, we only provide one function, called
MPI Delta recv. Although the delta-receive is non-blocking, we
can save the corresponding wait operation because the wait is im-
plicit at the use (or def) point of the received data.

With the page protection mechanic, MPI Delta send begin can
monitor that computation. First it puts the send buffer under page
protection. When a later write to the send buffer triggers a page
fault, the signal handler can determine which delta the computation
is trying to write to, non-blockingly sends out the previous delta
if the current one is not the first delta, and then opens the page
protection to the current delta to allow the computation writes
data into it. MPI Delta send end is used to send out the last delta
since no page fault will be triggered from send buffer after it.
MPI Delat wait waits for all issued non-blocking sendings of delta.

An important fact that guarantees the correctness of our delta-
send is the computation consecutively writes data into the send
buffer. The compiler can analyze whether such computation pat-
tern exists, and inserts the MPI Delta send begin right before the
computation.

Similar to early release in [4], MPI Delta recv first turns on the
page protection to the receive buffer and then let program continue
its execution. While early release uses alias memory pages, we
create a duplication of the receive buffer to perform the backgroud
receiving. Once the system sees a page fault from an access to the
receive buffer, it can figure out which delta the access belongs to,

1 2010/3/30

use
data

data

use
data

sender,
receiver,
network,
all busy

delta send begins

delta recv begins

(a) Single message communication of
dependent data. Overlapping of
i n d e p e n d e n t c o m p u t a t i o n a n d
communication using MPI non-
blocking send. No overlap between
dependent computations in sender and
receiver.

(b) Incremental communication between
sender and receiver. Delta send overlaps
sender computation and communication. Delta
recv overlaps communication and receiver
computation. Together they form sender-
receiver pipelining and fully utilize parallel
machines and their network.

delta
increments

unrelated
comp.

compute
data

non-blocking
send begins

unrelated
comp.

compute
data

recv done

only
sender
busy

sender/
network

busy

only
receiver

busy

(a) non-blocking send-recv

use
data

data

use
data

sender,
receiver,
network,
all busy

delta send begins

delta recv begins

(a) Single message communication of
dependent data. Overlapping of
i n d e p e n d e n t c o m p u t a t i o n a n d
communication using MPI non-
blocking send. No overlap between
dependent computations in sender and
receiver.

(b) Incremental communication between
sender and receiver. Delta send overlaps
sender computation and communication. Delta
recv overlaps communication and receiver
computation. Together they form sender-
receiver pipelining and fully utilize parallel
machines and their network.

delta
increments

unrelated
comp.

compute
data

non-blocking
send begins

unrelated
comp.

compute
data

recv done

only
sender
busy

sender/
network

busy

only
receiver

busy (b) delta send-recv

Figure 1. Comparison between the effect of non-blocking send-
recv and delta send-recv in a parallel execution.

and then wait for its corresponding receive to the duplicate buffer
to finish. When that receive finishes, the system copies the received
delta from the duplicate buffer to the acture receive buffer. Early
release incurs a page fault for every received page. Delta-recv, like
delta-send, is parameterized by the delta size ∆x and incurs a page
fault every ∆x pages.

Dynamic pipelining When used together, delta send and receive
enable the parallelism between sender and receiver computation.
We call this dynamic pipelining. The pipelining effect is illustrated
by an example in Figure 1. In the example, the sender and the re-
ceiver have dependent computations on a set of data. The sender
also has some independent computation. Figure 1(a) shows the ef-
fect of non-blocking communication, which overlaps the indepen-
dent computation and the communication.

The execution of delta send-recv is shown in Figure 1(b). The
sender begins to execute. After computing the first increment, the
communication starts. The receiver starts once the first increment
is arrived. At this time, the sender, the network, and the receiver are
all running in parallel. The process is a form of 3-stage pipelining
where data of each increment is computed, transferred, and used. In
addition to enabling parallel execution of dependent computations,
the use of incremental send may improve network efficiency. If
it takes a program longer time to compute an increment than to
communicate one, the communication calls will be spaced out, and
the lower rate of communication may alleviate network congestion
if there is any.

Pipeline chaining Delta send-recv may be chained together to
enable parallelism between more than two tasks. If we extend
the example in Figure 1 such that when it finishes processing,

the second task sends the data to a third task. The same type of
pipelining happens between them in the exact same fashion as the
pipelining between the first two tasks. Given enough computation,
all three tasks will execute in parallel after an initial period.

The benefit of chaining is important for MPI aggregate com-
munication such as broadcast and reduce. Such communication is
often carried out on a tree topology so it takes O(log n) steps to
reach n tasks. Chaining would enable parallelism between these
steps.

Overhead There are several sources of overhead when using delta
send-recv. It incurs a higher cost because it transfers a series of
messages instead of a single message. It includes processor time in
setting up and receiving a message and communication overhead in
storing its meta data and acknowledging its status. Delta send-recv
must be non-blocking, which can be more costly to implement than
blocking communication because of the need to manage simulta-
neous transfers. If paging support is used to monitor program data
access, there will be the cost of one page fault when sending and
the receiving each increment.

3. Evaluation
We use two machines with different characteristics to evaluate delta
send-recv. The first is a 32-processor IBM p690 “Regatta” multi-
processor machine. The second is an Ethernet switched homoge-
neous cluster with over 40 PC nodes. We use MPICH2 1.2.1 [7] on
both machines.

We use four kernel benchmarks that can represent common
communication patterns in distributed applications. The test pair
has two processes that sender computes and then sends an array of
data, while the receiver receives the data and does the same compu-
tation to check them. Cascade is a series of send-recv pairs, where
each node receives the data from its left neighbor, checks them, and
then pass them to its right neighbor. Ring performs communication
in a virtual ring topology. Unlike cascade, there is no dependence
between tasks in their computation. Reduce contains a set of pro-
cesses are organized in a virtual tree topology. The reduce operation
is performed on each element of an array, and finally the root pro-
cess holds an array in which each element is the sum of values from
all other processes. For each of the four tests, we alter the amount
of computation using the following three types, empty, random, and
trigonometric.

We have studied the effect of different delta sizes and send-
recv sizes in [1]. In general, the best increment size is within a
range, from 3 to 8 memory pages. And the granularity for delta
send-recv to be beneficial is 10 pages (40KB). Figure 2 shows
the speedup of using delta send-recv over using the normal MPI
send and receive when running a different number of MPI tasks
(processes). The results are collected with setting the data array to
one million element (4MB) and the delta size to 5 memory pages.

Figures 2(a) and 2(d) show the performance of the cascade
benchmark measured on the Regatta system and the cluster system
respectively. In figure 2(a), the improvement increases proportion-
ally as we increase the number of tasks. This confirms our analy-
sis in Section 2 that pipeline chaining can achieve arbitrarily high
speedup over base MPI implementation. The improvement boosts
as the amount of computation increases, since having more compu-
tation leaves more room for overlapping communication. The lim-
iting factor on both machines is communication bandwidth. On Re-
gatta, the bandwidth appears saturated at 27 tasks for empty com-
putation, 29 for random, and 30 for trigonometric. On the cluster,
the saturation happens at 16 tasks in all three cases. The other four
graphs in Figure 2 show same saturation point in ring and reduce
tests on the cluster. The bandwidth on Regatta seems sufficient in
these two tests.

2 2010/3/30

num of MPI tasks

sp
ee

du
p

ov
er

 M
P

IC
H

2

2 5 10 15 20 25 30

0
3

6
9

12
16

20

empty
random
trigonometric

(a) The cascade case on Regatta

num of MPI tasks

sp
ee

du
p

ov
er

 M
P

IC
H

2

2 5 10 15 20 25 30

0
1

2

empty
random
trigonometric

(b) The ring case on Regatta

num of MPI tasks

sp
ee

du
p

ov
er

 M
P

IC
H

2

2 5 10 15 20 25 30

0
1

2
3

empty
random
trigonometric

(c) The reduce case on Regatta

num of MPI tasks

sp
ee

du
p

ov
er

 M
P

IC
H

2

2 5 10 15 20 25 30

0
2

4
6

8
10

12

empty
random
trigonometric

(d) The cascade case on x86 cluster

num of MPI tasks

sp
ee

du
p

ov
er

 M
P

IC
H

2

2 5 10 15 20 25 30

0
1

2

empty
random
trigonometric

(e) The ring case on x86 cluster

num of MPI tasks

sp
ee

du
p

ov
er

 M
P

IC
H

2

2 5 10 15 20 25 30

0
1

2
3

empty
random
trigonometric

(f) The reduce case on x86 cluster

Figure 2. Performance of delta send-recv over the number of MPI tasks

The improvement for the ring test increases with the number
of tasks to around 50% in all three computation types on Regatta,
as shown by Figure 2(b). On the cluster, the improvement is con-
stant for random and trigonometric, although the empty computa-
tion shows no improvement, as shown by Figure 2(e). There is no
cascading in this case. The improvement comes from the higher ef-
ficiency between each pair of neighbors, compared to non-blocking
send-recv. The improvement for the reduce test increases at a loga-
rithmic scale, as shown by Figures 2(c) and 2(f). The reason is that
the length of the longest dependent task chain in k-task reduce is
log2 k.

4. Summary
We have presented delta send-recv, an extension to MPI non-
blocking send-recv, for overlapping dependent computation with
communication, using compiler and operating system support. It
enables dynamic pipelining and pipeline chaining and requires pro-
gram analysis and transformation only at the sender side. Empiri-
cal evaluation on an SMP multi-processor and a PC cluster shows
that delta send-recv consistently improves parallel performance for
coarse-grained send-recv. The largest improvement comes from
pipeline chaining, which has led to up to 23 times faster running
time on 29 MPI tasks.

References
[1] B. Bao, T. Bai, C. Ding, Y. Gao, and R. Archambalt. Delta send-recv:

Compiler and run-time support for dynamic pipelining of coarse-
grained computation and communication. Technical Report URCS
#953, Department of Computer Science, University of Rochester,
2010. to appear.

[2] G. Bronevetsky. Communication-sensitive static dataflow for parallel
message passing applications. In Proceedings of the International
Symposium on Code Generation and Optimization, 2009.

[3] C. Colby. Analyzing the communication topology of concurrent
programs. In Proceedings of the SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pages 202–
213, 1995.

[4] J. Ke, M. Burtscher, and E. Speight. Tolerating message latency
throuth the early release of blocked receives. In Proceedings of the
Euro-Par Conference, 2005.

[5] J. Lee, D. A. Padua, and S. P. Midkiff. Basic compiler algorithms for
parallel programs. In Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 1–12,
1999.

[6] J. M. Mellor-Crummey, V. S. Adve, B. Broom, D. G. Chavarrı́a-
Miranda, R. J. Fowler, G. Jin, K. Kennedy, and Q. Yi. Advanced
optimization strategies in the rice dhpf compiler. Concurrency and
Computation: Practice and Experience, 14(8-9):741–767, 2002.

[7] Mpich2: an implementation of the message-passing interface
(MPI). version 1.0.5 released on December 13, 2006, available at
http://www-unix.mcs.anl.gov/mpi/mpich/.

[8] J. H. Reif and S. A. Smolka. Data flow analysis of distributed
communicating processes. International Journal of Parallel
Programming, 19(1):1–30, 1990.

[9] M. M. Strout, B. Kreaseck, and P. D. Hovland. Data-flow analysis
for mpi programs. In Proceedings of the International Conference on
Parallel Processing, pages 175–184, 2006.

[10] A. Wakatani and M. Wolfe. A new approach to array redistribution:
Strip mining redistribution. In Proceedings of PARLE, pages 323–
335, 1994.

[11] Y. Zhang and E. Duesterwald. Barrier matching for programs with
textually unaligned barriers. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
pages 194–204, 2007.

3 2010/3/30

